
American Cannabis Society
(ACST) Token
Smart Contract Audit

Terrance Nibbles - Certified Auditor

December 5, 2023

SMART CONTRACT AUDIT 1

(ACST) Token
Smart Contract TESTnet Audit

Preface
This audit is of the ACST TESTnet contract that was provided for detailed
analysis in November 2023. The entire solidity smart contract code is listed at
the end of the report. The security issues described within the report can be
corrected prior to deployment on the MAINnet.

Website: http://ACST.IO

Legacy Token: https://reefertoken.io

Facebook: https://www.facebook.com/profile.php?

id=100077209938066

SMART CONTRACT AUDIT 2

http://ACST.IO
https://reefertoken.io
https://www.facebook.com/profile.php?id=100077209938066
https://www.facebook.com/profile.php?id=100077209938066

DISCLAIMER:

Disclaimer:

This audit report is based on a professional review of the provided smart contract deployed on the
TESTnet. It is important to note that this assessment represents our expert opinion and analysis of
the code at the time of the evaluation. The findings and recommendations presented herein are not
intended to serve as warranties, guarantees, or assurances of the contract's performance, security,
or functionality on any live network, including the Ethereum mainnet.

We expressly disclaim any responsibility for errors, omissions, or inaccuracies in this report, as the
assessment is conducted on a non-exhaustive basis and may not cover all possible scenarios or
future developments. The audit is conducted in accordance with industry best practices and
standards at the time of evaluation.

Furthermore, we are unable to confirm the deployment of this specific contract on the Ethereum
mainnet. This report is solely based on the provided code and does not verify the actual
deployment status on any live blockchain. It is the responsibility of the contract deployer to ensure
the accurate deployment of the contract and adhere to security best practices when deploying to
production environments.

Users, developers, and stakeholders are advised to perform additional due diligence and testing
before deploying or interacting with the contract on any live network. This report should be
considered as a tool for risk assessment rather than a guarantee of the contract's security or
performance. In the dynamic and rapidly evolving field of blockchain technology, risks and
vulnerabilities may emerge over time, and it is crucial to stay vigilant and up-to-date on security
best practices.

By relying on this audit report, the reader acknowledges and accepts that the audit is based on the
provided information and that no warranties, guarantees, or assurances are expressed or implied.

SMART CONTRACT AUDIT 3

The provided Solidity code appears to be a basic ERC-20 token
implementation. I'll go through the code and provide a detailed
review, highlighting potential vulnerabilities and explaining the
functions.

PROPOSED MAX TOTAL SUPPLY
100,000,000,000
ACST
POLYGON Blockchain

Review of TESTNET (ACST) Token Smart Contract

Smart Contract Review and Function Breakdown
Summary:
The provided smart contract is an ERC-20 token named
"NewToken." It inherits from the OpenZeppelin contracts IERC20
and Ownable. Below is a breakdown of the key functions and a
review of potential vulnerabilities.

Key Functions:
• Constructor:

• Initializes the total supply of the token and
allocates the entire supply to the contract deployer
(owner).

•
• ERC-20 Standard Functions:

• Implements standard ERC-20 functions such as
balanceOf, transfer, allowance, approve, transferFrom,
increaseAllowance, and decreaseAllowance.

• The transfer, transferFrom, and approve functions
include necessary checks and emit events.

SMART CONTRACT AUDIT 4

• _approve Function:
• Internal function to update allowance and emit the

Approval event.
• mint Function:

• Allows the owner to mint new tokens and allocate
them to a specified address.

• Ensures the minted tokens are not sent to the zero
address.

• setTaxRates Function:
• Allows the owner to set buy and sell tax rates.
• Ensures that the total tax rates (buyTax + sellTax)

do not exceed 100%.
• convertReeferHolders Function:

• Allows the owner to trigger a function to convert
Reefer token holders to NewToken.

• The implementation of this function is left for the
developer to define.

Potential Vulnerabilities and Recommendations:
• Visibility of State Variables:

• The state variables balances and allowances are
currently private. Ensure that their visibility is
appropriate for your use case.

• Reentrancy:
• The contract does not explicitly use a reentrancy

guard. Consider adding a modifier or using the
ReentrancyGuard from OpenZeppelin to prevent
reentrancy attacks.

• Total Supply Overflow:
• Be cautious with total supply modifications. Ensure

that additions to totalSupply cannot cause overflow.
•
•

SMART CONTRACT AUDIT 5

• Gas Limit:
• Ensure that gas limits are sufficient, especially for

functions like mint that modify state variables and
execute external operations.

• Default Visibility:
• Explicitly declare the visibility of functions and

state variables. Although Solidity 0.8.x applies certain
defaults, it's good practice to be explicit.

• Event Data:
• Ensure that event data provides sufficient

information for users and dApps to track token
movements.

•
• Unused Functions:

• If certain functions are not intended for use,
consider removing or commenting on their purpose.

• Documentation:
• Add comments and documentation to clarify the

purpose and usage of each function, especially for
custom functions like convertReeferHolders.

SMART CONTRACT AUDIT 6

SMART CONTRACT CODE.SOL PROVIDED FOR
REVIEW: ACST (token)

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

contract NewToken is IERC20, Ownable {
 string public name = "NewToken";
 string public symbol = "NT";
 uint8 public decimals = 18;
 uint256 public totalSupply = 100000000 * 10 ** uint256(decimals);

 mapping(address => uint256) private balances;
 mapping(address => mapping(address => uint256)) private allowances;

 constructor() {
 balances[msg.sender] = totalSupply;
 }

 function balanceOf(address account) external view override returns (uint256) {
 return balances[account];
 }

 function transfer(address to, uint256 amount) external override returns (bool) {
 require(to != address(0), "ERC20: transfer to the zero address");
 require(balances[msg.sender] >= amount, "ERC20: transfer amount exceeds balance");

 balances[msg.sender] -= amount;
 balances[to] += amount;

 emit Transfer(msg.sender, to, amount);
 return true;
 }

 function allowance(address owner, address spender) external view override returns (uint256) {
 return allowances[owner][spender];
 }

 function approve(address spender, uint256 amount) external override returns (bool) {
 allowances[msg.sender][spender] = amount;
 emit Approval(msg.sender, spender, amount);
 return true;

 }

SMART CONTRACT AUDIT 7

 function transferFrom(address from, address to, uint256 amount) external override returns (bool) {
 require(to != address(0), "ERC20: transfer to the zero address");
 require(balances[from] >= amount, "ERC20: transfer amount exceeds balance");
 require(allowances[from][msg.sender] >= amount, "ERC20: allowance too low");

 balances[from] -= amount;
 balances[to] += amount;
 allowances[from][msg.sender] -= amount;

 emit Transfer(from, to, amount);
 return true;
 }

 function increaseAllowance(address spender, uint256 addedValue) external returns (bool) {
 uint256 newAllowance = allowances[msg.sender][spender] + addedValue;
 _approve(msg.sender, spender, newAllowance);
 return true;
 }

 function decreaseAllowance(address spender, uint256 subtractedValue) external returns (bool) {
 uint256 currentAllowance = allowances[msg.sender][spender];
 require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
 uint256 newAllowance = currentAllowance - subtractedValue;
 _approve(msg.sender, spender, newAllowance);
 return true;
 }

 function _approve(address owner, address spender, uint256 amount) internal {
 allowances[owner][spender] = amount;
 emit Approval(owner, spender, amount);
 }

 function mint(address to, uint256 amount) external onlyOwner {
 require(to != address(0), "ERC20: mint to the zero address");
 totalSupply += amount;
 balances[to] += amount;
 emit Transfer(address(0), to, amount);
 }

 function setTaxRates(uint8 buyTax, uint8 sellTax) external onlyOwner {
 require(buyTax + sellTax <= 100, "Total tax exceeds 100%");

 // Your logic to set the tax rates and distribute to wallets here
 }

 function convertReeferHolders() external onlyOwner {
 // Your logic to convert Reefer token holders to NewToken here
 }

SMART CONTRACT AUDIT 8

 Terrence Nibbles, CCE, CCA Auditor #17865

SMART CONTRACT AUDIT 9

	Preface

